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A B S T R A C T

Waste management scene is in urgent need of robotic waste sorter. Nails and screws, as part of the construction
waste scene, are hard to be found and can therefore, cause damage to the site's construction safety and increase
the material loss. This paper presents a construction waste recycling robot. In order to complete the recycling
tasks, robots are expected to inspect the entire working environment and identify the target objects. This re-
search uses neural network technology to assist the robot patrol in an unknown work environment and to use
faster R-CNN methods to find scattered nails and screws in real time, so that the robot can automatically recycle
nails and screws. This study introduces computer vision technology and a full-coverage path-planning algorithm
into the field of construction waste management and proposes a novel construction waste recycling approach.
Based on this robot, we can continue our study of construction waste recycling robots that can automatically sort
and recycle most construction waste in the future.

1. Introduction

Generally, construction waste is the surplus and damaged materials
produced during the construction and demolition (C&D) process [1]. As
a common human social activity, the construction industry makes many
negative impacts on the natural environment, and construction waste is
one of them [2]. Many countries and regions are suffering from con-
struction waste, such as China, the United States, South Korea and
Kuwait [3]. Since the main treatment of construction waste is landfill,
the huge amount of construction waste consumes many of land sources
and leads to a large amount of GHG emissions [4]. Hong Kong, for
instance, is running out of existing landfill sites [5]. Shenzhen, one of
China's first-tier cities, is also facing the same problem [6]. This pro-
blem not only occurs in developing countries but also in developed
countries. 98million tons of construction waste was landfilled in 2003
in the United States [7]. Therefore, when faced with difficulties redu-
cing construction waste at source, attention should be diverted to re-use
and recycling [8]. By on-site recycling of construction waste, we can
increase the proportion of reuse and recycling of construction materials,
reduce waste transportation and disposal costs, prolong the service life
of landfills, and lessen the pollution generated by construction waste
[9]. Of all kinds of construction waste, nails and screws are common
objects on construction sites and are hard to find. Being hurt by

construction materials can also result in workers having to take time
off, medical costs, being maimed and suffering fractures [10]. Con-
struction workers are also facing the risk of stepping on a nail or screw
[11], which may cause such serious infection as tetanus. Therefore,
recycling nails and screws can reduce the risks of injury on construction
sites as well as saving money. However, workers usually ignore and
nails and screws lying around construction sites as being too small and
insignificant to look for.

Although automation technologies have been widely applied in the
construction industry, much of the on-site construction waste cleaning
and recycling work is still processed manually, which is inefficient and
costly [12]. Autonomous nail and screw recycling robots are expected
to increase the efficiency and possibility of their recycling [13]. How-
ever, the unstructured nature of on-site construction environments,
typically reflected in the absence of a predefined fixed location or a
predesigned fixed working path, makes the design and implementation
of automated recycling robots more difficult [14].

This paper presents a prototype nail and screw recycling robot based
on computer vision technology and a complete coverage path planning
(CCPP) algorithm. The prototype contains a crawler chassis, a four-
degree-of-freedom paw robot arm, detection system with camera and
omnibearing laser scanner, multi-cell storage box, and control system.
The robot uses computer vision technology to identify nails and screws
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and put them in specified storage boxes and is expected to search the
entire workspace without any previous knowledge of the location of
obstacles and waste, with the working path being determined solely by
the information provided by the laser scanner. To do this involved the
creation of a dedicated training dataset for Faster R-CNN training, to
enable the control system to convert environmental information into
neural activities and guarantee the time efficiency of coverage.

The rest of this paper is organized as follows: Section 2 reviews the
current literature relating to CCPP algorithms for cleaning robots and
technologies used in target detection. Section 3 illustrates the design of
the prototype, including the mechanics, moving control algorithms, and
detection approach. Section 4 evaluates the performance of the proto-
type, followed by the Section 5, which discusses the limitations of the
study and potential future work.

2. Literature review

This section reviews the technology and state-of-the-art in relation
to full-coverage path planning and computer vision real-time detection.
We briefly introduce various methods, their applications, and ad-
vantages and disadvantages. Previous studies of coverage path planning
show that it is difficult to find the optimal path in the location en-
vironment, and instead, the ‘greedy algorithm’ is used to select the
current optimal solution. For the target detection algorithm, the
emergence of ‘faster R-CNN’ means the target detection technology can
be widely used in real-time detection related applications.

2.1. Path planning algorithm

Many coverage path planning algorithms are widely applied to the
automation control of terrain scanner robots, demining robots, floor
cleaning robots, painter robots, lawn mowers, automated harvesters,
window cleaners, inspection of complex underwater structures, etc.
[15–19]. Since information relating to the entire workspace is given
before path planning, the algorithms used are multitudinous off-line
planning algorithms, such as classical exact cellular decomposition
methods (trapezoidal decomposition [20], boustrophedon decomposi-
tion [21,22], Morse decomposition [23] and distance transforms algo-
rithms [24]). However, there are many uncertain factors on construc-
tion sites. Although the border of the entire workspace can be
accurately represented by the construction drawings, it cannot au-
thentically reflect the details of workspaces due to the existence of
dismantling, rebuilding and fitting works. Therefore, using CCPP al-
gorithms for uncertain environments could provide a feasible approach
to assist a floor-tiling robot, for instance. Many methods have been
applied to path planning in uncertain environments during the last two
decades, such as disk covering [25], bioinspired neural networks [26],
cellular decomposition [27,28], sensor-based coverage approaches
[21,29] and finite state machines (FSM) [30].

Obstacle avoidance by the disk covering algorithm was first pro-
posed in 2004, as an early trial of the CCPP algorithm. This solution
assumes that the working area can be represented by an arbitrary closed
curve. Therefore, the entire workspace can be encased by a minimum-
area rectangle using an optimized method based on a method proposed
in 1945 [31]. They can decompose the quadrate workspace into several
circular regions using the method proposed by Kershner [41] and en-
sure the minimum number of disks at the same time. After the de-
composition work, the patrolling robot is expected to go through every
center of disks from the boundaries of the entire workspace. Though the
decomposition method of this solution is convincing, we did not con-
sider the obstacle avoidance method for the unknown barriers inside
the workspace as it is yet far from practical application.

The second solution uses neural network technology. The main
principle of this algorithm is to make the uncleaned area global to at-
tract the cleaning robot while making the barriers local to reject the
robot. In contrast with other solutions, this CCPP algorithm represents

the workspace using the triangular cell decomposition method pro-
posed by Joon Seep Oh et al. [48] to expand the potential directions of
the robot. The neural network algorithm then determines the coverage
priority of robot. However, the complexity of neural networks makes
the computational complexity of this algorithm higher than other
methods. A similar approach has been used in underwater vehicles
[32], which extends the 2-D path planning algorithm to 3-D underwater
environments. Similarly, Guo and Balakrishnan proposed a coverage
solution for nonholonomic mobile robots by integrating neural network
technology and the circular region decomposition method [33].

Boustrophedon decomposition is one of the cellular decomposition
methods that have been widely used in CCPP research both for certain
and uncertain environments. Batsaikhan et al. proposed the method to
decompose the workspace into easily covered rectangles using the de-
tected characteristic bindery of obstacles and cover the single region
with the traditional zig-zag path, which can work well in covering
uncertain workspace [21]. Although this method was used in a certain
workspace by Choi et al. in given environments, there are many dif-
ferences between certain and uncertain environments. More im-
portantly, this algorithm may cause dead zones in extreme situations,
and the overlap rate of coverage path is primary determined by the
location of obstacles. Recently, there is another method based on
boustrophedon motion, which combined with advanced point-to-point
path planning algorithms to reduce the distance of the backtracking
path [22]. This method performs a lower overlap rate when comparing
with other CCPP algorithms based on boustrophedon motion. However,
due to the disadvantage of boustrophedon motion, the algorithm needs
to find the backtracking path multiple times in a complex environment,
which makes the robot still waste more time and computational power.

Another CCPP algorithm proposed by Caihong Li et al. claimed that
the algorithm based on the Finite State Machine (FSM) approach and
rolling windows approach could cover unknown environments com-
pletely without causing too much overlap [30]. Their result shows the
algorithm will cause an 11.98% overlap rate, which is about 40% of the
random CCPP approach when supposing the coverage rate is about
98%. This online path-planning algorithm is a step-by-step method for
coverage planning. The robot detects adjacent environmental in-
formation and updates the rolling window every time it shifts to an-
other area. The size of the rolling window is very small and makes the
computational complexity of this algorithm relatively low. Hence, the
robot decides the direction of its next motion using ‘greedy strategy’,
which means that the robot will visit the grid with the highest possi-
bility of reaching another unvisited grid. This algorithm successfully
proved that the FSM approach, rolling windows approach and greedy
strategy could be effective and efficient in solving CCPP problems in
uncertain environments. Therefore, it is used with some modifications
and improvements to fit the requirements of a floor tiling robot. This
research provided reliable proof of the effectiveness of the FSM ap-
proach, rolling windows approach and the greedy strategy while sol-
ving path-planning problems in complicated unknown environments.
The characteristics of this algorithm are in good agreement with such
requirements of floor tiling works as low repetition rate, orderly work,
and controllable coverage rate. Therefore, the path-planning algorithm
described in the present paper learns from this algorithm and improves
its shortcomings.

2.2. Target detection

Ross Girshick et al. proposed a CNN-based target detection algo-
rithm named Regions with CNN features (R-CNN) [34]. The process is
divided into four steps: (1) Extract region proposals, where the Selective
Search method is used to generate 1 K–2 K candidate areas in a picture;
(2) Feature Extraction, in which, for each candidate region, the feature is
extracted using a depth convolutional network; (3) Test-time detection,
in which the feature is sent to each class of SVM classifier to determine
if it belongs to that class; and (4) Bounding box regression, using this
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simple method to reduce the localization error. R-CNN was the first to
use CNN technology in object detection, which greatly enhanced the
effectiveness of target detection and laid the foundation for future re-
search in this field. However, R-CNN is not fast enough in real-time
detection because the algorithm needs to process the CNN operation for
each object proposal.

Fast R-CNN is a method based on R-CNN that classifies object pro-
posals more quickly and efficiently [35]. Fast R-CNN is superior to both
R-CNN and SPPnet in training, testing, and mAP. In short, compared
with R-CNN, fast R-CNN completes the repeat computations of R-CNN
in one operation, using a multi-task loss.

Since fast R-CNN successfully reduces the time to detect objects
using CNN, more possibilities for optimizing the detection time exist in
the region proposal algorithms. Faster R-CNN came into being because
of this request. Faster R-CNN proposes a Regional Proposal Network
(RPN), which shares convolutional features with the down-stream de-
tection network to enable nearly cost-free region proposals. Meanwhile,
the learned RPN can also improve the accuracy of object detection. The
efficiency of faster R-CNN makes real-time detection a truly widespread
reality.

Faster R-CNN has been widely used in various fields. Some previous
studies focused on the detection of small objects. One improved the
faster R-CNN algorithm and enabled faster R-CNN to be used in lane
marking detection by combining such other methods as fast multi-level
combination, context cues, and a new anchor generating method [36].
A recent study has improved faster R-CNN and used it in the field of
face recognition [37]. For construction sites, Fang and other researchers
have used this method in the field of safety inspection and supervision,
providing important opportunities for real-time on-site monitoring and
improved safety management [38]. Other construction safety manage-
ment research also mentions this method [39], in the use of computer
vision technology to detect objects as dangerous or not, depending on
their location.

3. Methodology

A nail and screw recycling robot mainly faces three challenges.
Firstly, the unstructured working environments require robots to move
without any environmental information. Secondly, robots need to
identify nails and screws in real-time. Finally, robots are expected to
return automatically to avoid affecting other work. To face these
challenges, recycling robots need a meticulous structural and algo-
rithmic design. There are some structural similarities with cleaning
robots since their tasks are similar. Learning from a traditional cleaning
robot [40], the structure of a nail and screw recycling robot can be
broadly divided into a motion unit, collection unit, storage unit, sensing
unit, and control system. However, unlike a floor-cleaning robot, it
needs to identify and classify nails and screws in complex environ-
ments, which increases the task's complexity.

3.1. Robot design

The nail and screw recycling robot consists of four main units: the
motion unit, the robot arm unit, and two detection units. Recycling
robots for construction sites are usually required to move and operate
on rough and uneven terrain because most of the time the ground is not
flat. Numerous studies have shown that crawler robots can adapt well
to complex terrestrial environments and help robots work in harsh
working conditions. Wang et al. [49] proved that the tracked robot
could complete such tasks as moving on slopes, stepping over ditches,
and climbing over obstacles. Therefore, as shown in Fig. 1(a), the
movement unit of this autonomous nail and screw recycling robot is a
crawler mobile unit with a specially-designed passive suspension that
can go through obstacles without violent vibration of the robot body.
This is very important for robot mobility and agility when moving on
the rough ground. A robot arm of 5 DoF, lightweight and high loading

capacity for flexible manipulation was developed for picking and
sorting nails and screws. In addition, the robot has two environment
perception devices using an LIDAR scanner and video camera using
computer vision technology to identify barriers and target objects re-
spectively. The prototype is shown in Fig. 1(b).

3.2. Complete coverage searching

The proposed algorithm is expected to build a neural network ar-
chitecture with dynamic neural activities that can represent a dynamic
workspace and assist the recycling robot in patrolling through every
sub-region in an authorized area. We firstly divide the specified
workspace into a minimum number of sub-regions, with each sub-re-
gion treated as a neuron in the neural network. The membrane poten-
tial of each neuron is determined by internal neural connections, which
makes unclean areas and obstacles attract and exclude robots respec-
tively. The robot path is planned on-line based on the membrane po-
tential of adjacent neurons, and the membrane potential of each neuron
is updated by a rolling windows approach so that the robot will go
through all regions autonomously.

3.2.1. Environments and discretization
The detection device of the robot is a video camera. The camera is

placed at the front of the robot at a fixed angle and scans the ground
ahead of the robot in real time. As Fig. 2 shows, the ground being
scanned is trapezoidal due to the way the camera works and how it is
placed.

The number of nodes in the neural network algorithm directly af-
fects its computational complexity. Therefore, increasing the area of a
single neuron can reduce the number of neurons in the neural network
and reduce the computational burden. Hence, we designed the robot
scanning process as two steps. In the first step, the robot shifts from the
initial region to the next region and the camera sweeps through a
rectangular area. Then, the robot rotates in place and sweeps the
camera across an annular area. As shown in Fig. 3, the entire circular
area can be cleaned by the two steps.

3.2.2. Map representation
According to the initial solution of decomposing a rectangle by

circles [41], the algorithm encases a limited area by a minimum-area
rectangle [31] and, as presented by Yi and Zhihua [42], the map of
workspace can be easily represented by a minimum number of circles
whose area is determined by the detection distance of the video camera.

Firstly, this study encases the given workspace using a minimum
encasing rectangle (MER) - defined as the rectangle of minimum area
that can enclose the given area. Although the MER is calculated by
various methods, the one used here is based on the theorem that the
MER must be collinear with a side of the given polygon [31]. Since the
common boundaries of the construction sites will not be complicated
curves, the computational complexity will not be too high. A typical
example is shown in Fig. 4.

Therefore, an irregular polygon workspace can be decomposed into
circular areas. Due to the theorem proposed by Kershner [41], the
distance between adjacent circles is √3R, which determines the position
of the circles. The result is shown in Fig. 5, where R is the detection
distance mentioned above.

Based on the structure of the barrier detection area recognition area,
the network planning of node i is represented in Fig. 6, where each node
has six adjacent nodes.

Moreover, as a common standard, we assume that the circular
center coordinates of the lower left corner are (0.5R,0), which has been
proven valid in a previous study [42]. The workspace represented by
the circular areas is shown in Fig. 7. Obviously, over 95% of the
workspace will be covered if the robot goes through every node inside
the workspace.

Z. Wang et al. Automation in Construction 97 (2019) 220–228

222



3.2.3. Model construction
An improved neural network model was proposed by Luo and Yang

[26], in which the dynamics of each neuron is calculated by the
shunting equation, derived from Hodgkin and Huxley's membrane
equation [43]. In contrast with Luo and Yang's approach, we integrate
the spiral filling motion because of its robustness, as proved in previous
studies [27,28,44,45]. The basic idea of this neural network approach is
to make the neurons, which are surrounded by more obstacle and
cleaned areas, be more attractive to the robot while the obstacles are
excluded from the robot to avoid collision through the dynamic neural
network landscape.

Since we want to encourage robots scanning from the boundary to
the center, which reduces the return distance at the completion of all
tasks, the shunting equation is defined as:

∑= − + −
⎧
⎨
⎩
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⎫
⎬
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− ++

=

=
+ −dx

dt x x I ω x D x IA (B ) [ ] [ ] ( )[ ]i i i i
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ij j i i
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where i and j are the number of neurons; Ii is the external input and ωij

is the connection weight between neuron i and j; A, B and D represent
nonnegative constants describing the passive decay rate and upper and
lower bounds respectively. Affected by this equation, neural activity of

Fig. 1. Design drawing and prototype of the construction-recycling robot.

Fig. 2. Video camera working range.

Fig. 3. Scanning process of a single neuron.

Fig. 4. Encasing the given workspace using a minimum encasing rectangle.

Fig. 5. Pattern of decomposing a rectangle by circles.
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the obstacle will be less than zero and neural activity of the area near
the obstacle and cleaned area will be slightly higher than the area away
from the obstacle.

The value of the external input is determined by whether the node is
occupied or not. In order to avoid collision, the value of Ii is set to −E
when the neuron is occupied. In contrast, the value of Ii is set to E when
the node is free. The value of Ii is set to 0 when the node is cleaned to
make sure the cleaned area neither excludes nor attracts the robot. The
equation is

=
⎧
⎨
⎩

−
I

E obstacle
E free

cleaned0
i

(2)

The connection weight ωij is determined by the Manhattan distance
of two regions. In this case, the Manhattan distance of an adjacent
neuron is set to 1. Therefore, the connection weight can be calculated
by Eq. (3), where dij is the Manhattan distance of neuron i and neuron j -
the value of ωij being is inversely proportional to dij. In order to de-
crease computational complexity, farther nodes will be ignored. This is
controlled by variable α.
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Similarly, when the robot performs point-to-point motion, the
neuron activities are calculated by
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In contrast with shunting Eq. (1), this equation adds a parameter
φcosδij, which guarantees that the robot tends to approach the target
neuron. φ is a positive coefficient and δit is the angle between the vector
from robot to neuron i and the vector from robot to target neuron t.
Meanwhile, the parameter ∑ =

= +ω x[ ]j
j k

ij j1 ensures the robot moving path
will be far away from the obstacles.

3.2.4. Path planning
We divide the robot into five states in FSM as shown in Fig. 8. S1 is

the initial state, S2 is the state of existing uncovered free grids adjacent
to the robot, S3 is the state of without uncovered free grids adjacent to
the robot, S4 is the state the nearest uncovered grid has been found, and
S5 is the end of the entire process. S6 is the state that the robot went to
the appointed place when lacking power or with a full load. The stra-
tegies marked F1, F2, and F3 are illustrated in Fig. 8. F1 is the strategy
that the robot is searching for the neuron with maximum neural ac-
tivity. F2 is the strategy that the robot is searching for the nearest un-
covered free grid using the Dijkstra algorithm, and F3 is the strategy
that the robot is shifting to the target uncovered free grid.

In the F1 strategy, the path-planning algorithm decides the next
working grid of the robot based on the rolling windows as Fig. 9 shows.
The degree of attraction of the robot's peripheral nerve nodes to the
robot can be calculated by the previously mentioned shunting equa-
tions. In order to reduce the energy and time costs of the robot, the
coverage pattern is generated from the neural network model and the
previous situation of the robot. The following movement direction is
firstly determined by the neural activity and secondly determined by
the degree of swerving. Therefore, the next neuron Nnext is obtained by

Fig. 6. Adjacent nodes to node i.

Fig. 7. Workspace represented by circular areas.

Fig. 8. Structure of the Finite State Machine (FSM).

Fig. 9. Network planning of node i.
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← = + × = …N x MAX x β COSθ j k( , 1, 2, , )next N jnext (5)

where β is a small positive constant and k is the number of adjacent
neurons of the current neuron; θ∈ [0,π] is defined as the turning angle
between the current orientation and the next moving direction.

When the grids in the first layer are either visited or occupied, the
robot is in the S3 state. In this state, the control system uses the Dijkstra
algorithm to search for the nearest uncovered free grid. The grid in-
formation record in F1 strategy will be used. With the Dijkstra algo-
rithm, the system searches the nearest unvisited neuron in the neural
network topology from near to far with regard to the central neural,
where the robot is located. The robot can subsequently move close to
the nearest unvisited point as soon as possible using Eq. (5).

Strategy S5 means that the robotic package is full and needs to be
moved to the item collection point. Similarly, the robot uses Eq. (5) to
determine its own movement path. When no grid is detected that has
not been visited, the system enters the S6 state. In this state, the robot is
expected to return to its initial position.

3.3. Detection and recycling

Faster R-CNN, as the most reliable computer vision object detection
technology, is used here to detect the location of objects. This section
illustrates the training, testing, and application process of the model. A
large amount of diverse training and testing data has been established
to ensure the reliability and stability of the model. After the model
passes the test, we use it for an instance of real-time video exploration
to ensure the model is viable.

Three common types of nails and screws are used as prototype re-
cycling targets. The practical application experiment is completed by a
fixed robot to verify the reliability of the model.

3.3.1. Training
We placed the different kinds of nails and screws separately on the

cement floor, sand, and marble and collected the required data through
many cameras. The data covers a variety of possible scenarios and has
ample dataset size, including various backgrounds and perspectives.

After collecting the data, we manually annotated the data through
the graphical image annotation tool Labeling [46]. The preprocessing of
the prepared data set is shown in Fig. 10. Then we saved the file in
VOC2007 format in the specified directory and trained the ZF model
using faster R-CNN in CAFFE [47]. To ensure the reliability of the
model, we set the first and second stage of RPN and the first and second
stage of faster R-CNN to 40,000 and 20,000 iterations respectively. The
result shows that the model's mean average precision (AP) for nails and
screws is 0.891.

3.3.2. Testing
We tested the model repeatedly with video and images. Some results

are shown in Fig. 11.
Using the faster R-CNN technology, the camera can accurately

identify the target object and provide an accurate relative position.
Hence, we can convert the relative position into the absolute position of
the object and control the robot to pick it up. Since the position of the
camera is fixed and we assume that the prototype is on the same plane
as the detected object, the coordinates in the video can easily be con-
verted to the difference in position between the detected object and the
prototype in the working plane.

4. Evaluation

4.1. Detection and picking-up system

In order to evaluate the detection unit, we applied the trained model
to different backgrounds and observed the results. As shown in Fig. 12,
the nails and screws can be detected in different backgrounds.

Fig. 10. Preprocessing the training dataset.

Fig. 11. Object detection testing result

Fig. 12. Video frame and detection results in different working environments.
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Then, we tested the model with the real nail and screw recycling
robot. As shown in Fig. 13, the robot not only can successfully pick up
the nails and screws, but also put them in the correct box.

Since the experiment is supported by video camera, some of the
video frames gathered by the camera are shown in Fig. 13. With the
faster R-CNN model, the robot can recognize the target object with high
probability, which is shown in Fig. 14.

4.2. Prototype movement

The proposed neural network approach is capable of planning a
complete coverage path for cleaning robots without any human inter-
vention. In this section, the model is applied in a circular cell decom-
position workspace without using any previously known environmental
information, although the boundary of the entire workspace is known.

For comparison, the model was applied to a completely unknown
outdoor environment. The environment of the entire workspace is as-
sumed totally unknown except the boundary of the construction site,
which can be easily obtained from a drawing and is usually static. The
robot can only sense a limited range with a sensor named LIDAR

Scanner. The neural network includes 20×30 discretely and topolo-
gically organized neurons, where all the neural activities are initialized
to zero. The model parameters are set as A=50, B=1, and D=1 for
the shunting equation; μ=0.05 and α=1 for the lateral connections;
and E=100 for the external inputs. The robot is initially set in S (1,11)
which is the left bottom of the workspace. The boundary of the entire
workspace is obviously illustrated by the neural activity landscape,
where the unknown area is regarded as an uncleaned area (Fig. 15).

When the robot meets the first deadlock in L (15,3), as shown in
Fig. 16(a), the neural activity of the entire workspace is represented in
Fig. 16(b). The neural activity of the unknown environment and un-
cleaned regions is high, while the neural activity of the obstacle area is
low, and approximate to zero for the cleaned area.

When the entire task is finished, the neural network turns into a
static situation, in which the neuron activities of all unoccupied neu-
rons are equal to zero, as illustrated in Fig. 17.

Whether it is for deadlock off or return mode, point-to-point path
planning is essential. We assume that the robot is currently in E (16,24)
and the coordinate of the target neural is T (1,11). Therefore, the
landscape of the neural network is generated as shown in Fig. 18. The
neural activity of neurons away from the target neuron is much lower
than that close to the target neuron. Meanwhile, the neurons near ob-
stacles have a lower degree of neural activity. The neural landscape
determines that the movement of the robot will be as straight as pos-
sible towards the target point while avoiding obstacles.

The result shows that in this case study, the coverage rate is 100%
with a 0.88% repetitive rate. In this case, we assume that the radius of a
circle is 2 m. Therefore, the robot has passed 1828m and turned

Fig. 13. The picking up and sorting process.

Fig. 14. Video frame and detection results.

Fig. 15. Top view and activity landscape of the neural network upon com-
mencement.

Fig. 16. Top view and activity landscape of the neural network when meeting
the first deadlock.

Z. Wang et al. Automation in Construction 97 (2019) 220–228

226



17,700° through the entire process.
In order to demonstrate the advancement of this algorithm, the

performance of a recent algorithm is used for comparison. Due to the
different ways in which maps are expressed, we improved the algo-
rithms developed by Amna et al. [22] and tested them on the same map.
The result is shown in Fig. 19. Although the algorithm reduces the
length of the backtracking path compared with the traditional bous-
trophedon motion algorithm, it still has more backtracking and has a
higher repetitive rate. In this case, the coverage is 100% and the re-
petition rate is over 12%. The total turning angle exceeds 8040° and the
total distance is more than 2036m by using this algorithm. In this
study, the speed of the robot is 0.5m per second, and it takes 4 s to
rotate one revolution. Therefore, the algorithm proposed in this study
reduces the coverage time by nearly 7.4%. Meanwhile, the efficiency of
the algorithm will be more significant in a larger working environment.

5. Conclusion

This paper describes the development and testing of a prototype nail
and screw recycling robot. Its structure mainly comprises two parts, one
for moving, and the other for recycling. The moving unit is a crawler
robot chassis with a CCPP algorithm to assist it in going through every
part of the construction site, while the recycling unit, which contains a
video camera and 5 DoF robot arm, collects and classifies the target
objects. Computation complexity and work efficiency are traded off by

using circular sub-regions to represent the entire workspace, a neural
network is used to ensure the efficiency of coverage, and the faster R-
CNN algorithm is applied in detecting target objects. The feasibility and
efficiency of the proposed prototype are discussed and illustrated
through experiments.

The combination of computer vision technology and a full-coverage
path planning algorithm for recycling is a novel development in the
field of construction waste management and, based on this robot, we
will continue to study construction waste recycling robots that can
automatically sort and recover most of the construction waste in our
future work. However, while the proposed prototype provides an ef-
fective solution for automatic waste recycling, some improvements in
efficiency and general availability are still needed. In order to avoid
causing more repetition rates, the algorithm generates a lot of corners
on the path. In future works, we will further improve coverage effi-
ciency by adding parameters that control the degree of turning in the
shunting equation and setting reasonable weights. The Omnidirectional
Multi-Camera System, for instance, which can detect surroundings
without robot rotation, may be a better choice for a recycling robot as
the efficiency of cleaning one region could be increased. However, this
requires higher accuracy of Omnidirectional Multi-Camera System and
higher computation complexity in object detection. Setting up a larger
computer vision dataset will make also it possible to identify more types
of construction waste in different circumstances. Furthermore, we
verified the performance of the faster R-CNN algorithm in non-complex
environments, while the current prototype expectedly is less effective in
more complex situations. The use of other computer vision technologies
and larger datasets, such as ‘big data’, are likely to increase the pro-
spects for the development of recycling robots for real construction sites
in the future.
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Fig. 17. Top view and activity landscape of the neural network on completion.

Fig. 18. Activity landscape of the neural network for the point-to-point case.

Fig. 19. The performance of path planning using two-way proximity search.
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